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Abstract

We consider a static cheap talk model with either one or two senders whose biases are

privately known to themselves only. Before the senders learn the state, they send a cheap talk

message about their bias to the receiver. Subsequently, the receiver chooses one sender to get

state-relevant advice from. We ask two questions - One, is there an equilibrium where the

senders’ bias is revealed? Two, is the bias revealing equilibrium welfare improving for the

receiver? We find that when there is only one sender, there is no bias revealing equilibrium.

However, when there are two senders, there exists a bias revealing equilibrium, and it could

give the receiver more utility than any equilibrium which is possible without any bias revelation.

This highlights a new channel through which sender competition can benefit the receiver.
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1 Introduction

Consider a cheap talk model of strategic communication in which the receiver is uncertain about the

sender’s bias. The receiver can interact with multiple experts before hiring one expert from whom

she can get payoff-relevant advice. For example, consider an individual who wants to consult a

financial adviser. The individual may be uncertain about the risk appetites of different advisers.

However, he can talk with different advisers (without disclosing the state of the world - his personal

finances) before deciding who he will consult. In this cheap talk interaction, the individual hopes

to learn something about the adviser’s bias. Subsequently, the individual can hire one adviser and

disclose his finances, at which point the adviser learns the state and can give advice via a cheap

talk message. There are other examples of such environments like, for legal advice a defendant has

to hire one from a pool of lawyers, for policy advice companies have to hire one of several field

experts.

Motivated by such examples, we consider a cheap talk game with N ∈ {1,2} senders, where

the bias of each sender is her private knowledge. It is common knowledge that the bias can be either

high or low and that the bias of each sender is drawn independently from a known distribution.

Before any player (sender or receiver) gets information about the payoff relevant state, we add

a bias communication stage (stage 1). In this stage, the senders simultaneously send cheap talk

messages about their bias type, following which the receiver selects one sender. The next stage

(stage 2) is a cheap talk game in which the chosen sender perfectly observes the true state and sends

a cheap talk message to the receiver. The receiver chooses an action, and all players get paid.

First, we investigate whether there is an equilibrium in which the sender(s) reveal their bias in

stage 1. Our main result shows that an endogenous bias revelation equilibrium exists when there are

two senders, but not for the one sender case. Moreover, under some conditions, the receiver prefers

a two-sender bias-revelation equilibrium over any equilibrium possible without the bias revelation

stage. Thus, we demonstrate a new channel through which sender competition can benefit the

receiver - competition permits an endogenous bias revealing equilibrium which improves the ex-

ante payoff of the receiver in the cheap talk game. We also contribute to the literature on cheap

talk with uncertain biases by characterizing closed form expressions for equilibria and equilibrium

payoffs in a cheap talk game with quadratic loss utility functions.
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In the baseline case of one sender, any bias revealing equilibrium will feature a Crawford-Sobel

type partition equilibrium (Crawford and Sobel (1982)) in the second stage after biases are revealed

in the first stage. For any such equilibria played in stage 2, we show that the gain from deviation

for the high-bias sender always exceeds the gain from not deviating for the low-bias sender. This

is because the high bias sender obtains a more balanced1 partition when she pretends to be low-

type whereas it is the reverse for the low type sender. Since senders have concave utility functions,

they prefer more balanced partitions. This result implies that whenever the high bias sender does not

want to deviate (gain from deviation is negative), the low bias sender will want to deviate (gain from

not deviating is negative), and thus we cannot have both types revealing their bias in equilibrium.

However, when two senders compete to be hired by the receiver, there exists a bias revealing

equilibrium. The two-sender case presents two new forces. First, since the receiver hires only one

sender, the senders compete to get hired since the sender who is not chosen gets a bad outside

option. Second, as the probability of getting hired depends on every sender’s bias message, and

the senders are uncertain about their rival’s bias, there is strategic uncertainty, which is not present

in the one-sender case. These new forces allow us to control incentives by identifying conditions

on the outside option and on the strategic uncertainty which allow the bias revealing incentive

compatibility constraints to hold.

To show the welfare implications of sender competition, we analyze when a bias revealing

equilibrium is preferred by the receiver over any equilibrium possible without the bias revealing

stage. There are two factors which affect the receiver’s payoff which help us compare bias reveal-

ing equilibria to those possible without the bias revelation stage. One, the amount of information

transmitted as measured by the number of partitions possible in equilibrium. Two, the variance

in payoff induced by the equilibrium as measured by the balance2 of the partition (more balance

leads to lower variance in payoff). Since we work with the quadratic loss utility function, the re-

ceiver prefers more information and more balance. The maximum number of partitions possible in

a non-revelation equilibrium is between the maximum number of partitions possible with a known

high bias sender in stage 2 and the number of partitions possible with a known low bias sender

1Li and Madarász (2008) define a partition as more balanced than another if there is a smaller increase in noise as
one moves from lower messages to higher ones (for positive biases). Receivers with concave utility functions prefer
more balanced partitions.

2Given a partition with n intervals, if all intervals are of equal length then the partition is most balanced whereas if
the variance in interval sizes is very high, the partition has low balance.
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in stage 23. Thus, compared to a non-revealing equilibrium, in a revelation equilibrium, the re-

ceiver gains/loses in amount of information when stage 2 is the maximal partition equilibrium with

low/high bias sender. Further, the variance in payoff induced by the revealing equilibrium is higher

when the difference between high and low bias is higher and the fraction of high bias senders in

society is neither too high or too low.

We find conditions under which a bias revealing equilibrium is preferred by the receiver in the

following manner. We construct a bias revealing equilibrium where the sender and receiver always

play the most informative Crawford-Sobel type partition equilibrium after the bias is revealed. Sub-

sequently, we show that if the high bias is sufficiently large and the maximum partitions possible

without bias revelation is strictly lower than that possible in a Crawford Sobel type partition equi-

librium with a low bias sender4, then this bias revealing equilibrium is preferred by the decision

maker to all equilibrium possible without any bias revelation. The intuition for this result is that

as compared to any equilibrium without bias revelation, in the revelation equilibrium the receiver

gains when she hires the low bias sender and loses when she hires the high bias sender. The gains

come from higher precision, and the losses come from lower precision and lower balance. As the

high bias increases beyond 1
12

5 the non-revelation world is worse for the receiver as both preci-

sion and balance falls whereas the revelation equilibrium is made worse only because of a loss of

balance. Thus, the payoff from our revelation equilibrium falls slower than the payoff from the non-

revelation equilibrium. When the high bias is large enough, the revelation equilibrium is preferred

by the receiver.

We contribute to the literature on cheap talk games with uncertain sender bias. The paper

closest to ours is Li and Madarász (2008) which discusses a static cheap talk game with one sender

of unknown bias. They compare two regimes - one where the sender must announce her true bias

before communicating about the state, and another where the sender has no possibility of revealing

any information about her bias before sending state relevant information to the receiver. They find

that if the utility function of the receiver is concave enough, then he may prefer the regime where

the sender’s bias is not revealed. Our paper differs from Li and Madarász (2008) in two ways.

3As the parameter capturing the fraction of high bias senders in society goes from zero to one, the maximum number
of partitions spans the range.

4This is characterized by a high enough probability of the sender being the high bias type.
5If 1

4 > High bias ≥ 1
12 , then the most informative equilibrium is a two partition equilibrium.

4



One, we allow the senders to choose if they want to reveal their biases by adding a pre-play bias

communication stage before any sender gets to observe the true state. This is different from the ex-

ogenous bias revelation regime considered in Li and Madarász (2008) for two reasons. First, since

a sender’s bias is her private information, in most environments, it would be very difficult to explain

how an exogenous truthful bias revelation can be enforced. This assumption becomes even more

difficult to justify because we show that in the one sender case, endogenous bias revelation is not

possible. Furthermore, while Li and Madarász (2008) consider equilibria that follow the exogenous

announcement of true bias, they do not consider the conditions needed for the sender to endoge-

nously reveal her bias prior to learning the state. These conditions limit the possible outcomes in

equilibrium. Second, we allow for more than one sender. We show that while endogenous bias

revelation is not possible with one sender, bias-revealing equilibria exist in the two sender world,

and they can even be welfare improving for the receiver.

Quement (2016) considers a model with unknown bias in which there are two senders and

the receiver gets messages from both senders sequentially. In our model, the receiver can only get

message from one sender, and the sender has the option to reveal her bias before learning state-

relevant information. Further, in contrast to Quement (2016), where an increase in the number of

senders reduces the receiver’s payoff, we find that sender competition can improve the welfare of the

receiver. Other papers with uncertain sender bias include Antić and Persico (2020) in which the bias

is endogenously determined, and Atakan et al. (2020) which looks at a repeated game environment

to determine the optimal path of the stakes involved in the relationship between a sender and a

receiver.

The second strand of literature we connect to is the one on cheap talk models with multiple

senders. Li (2010) considers a model with multiple senders and privately known bias with different

learning protocols. This paper finds that competition improves welfare. In contrast, we introduce

sender competition in a different way: only one sender is hired after the pre-play bias communica-

tion stage, so the senders compete to get hired, without knowing the state. Li et al. (2016) considers

a model of cheap talk with multiple senders, where each sender gets a private signal about their own

project. In contrast, in our model, there is only one payoff relevant state; and once hired, the sender

learns the state perfectly6.

6Schmidbauer (2017) considers a multi-period version of Li et al. (2016) and shows more competition harms the
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Our paper also relates to multi dimensional cheap talk literature, since there are two dimen-

sions (sender bias and state of the world) which are privately observed by the sender. Multi-

dimensionality of the state of the world in itself generates an additional benefit of sender competi-

tion, as documented in Battaglini (2002). In our paper, we find a different channel through which

competition helps - by allowing for bias revealing equilibrium to exist. Chakraborty and Harbaugh

(2007), Chakraborty and Harbaugh (2010) consider multi-dimenisonal cheap talk environments and

show how using comparative ranking we can get full information revelation. In our paper, the two

dimensions are independent of each other and hence can not be comparatively ranked. Our focus

is not on full information revelation across both dimensions, we are interested in examining the

bias-revealing equilibria and their welfare properties.

Finally, we contribute to the growing literature on papers which use mechanism design in

cheap talk games. We allow the receiver to design a mechanism (without transfers) where she

can only reward bias announcements with an equilibrium choice in stage 2 to elicit the true bias

of the sender. This is different from mechanism design with transfers as has been studied before

by Krishna and Morgan (2008) and Ottaviani (2000) where the receiver can commit to message-

contingent transfers to make the sender reveal the state truthfully. Further, in our paper, the message

on which the transfer is based is about the senders’ bias as opposed to the state-relevant message.

For the same reasons, and because we have a static model, we differ from papers like Kolotilin and

Li (2021) which looks at a repeated communication framework with transfers, and papers which

study relational contracts in a repeated communication framework like Golosov et al. (2014) and

Kuvalekar et al. (2022).

The rest of the paper is organized as follows: section 2 describes the model. In section 3, we

start with a baseline case of one sender and show that there does not exist a bias revealing equilib-

rium in the one sender model (subsection 3.1). Subsequently, in section 3.2 we show that such an

equilibrium does exist in the two-sender model. Next, we show that a bias-revealing equilibrium

may give the receiver more utility than any equilibrium possible without bias revelation. Section 4

discusses some of our modelling choices and concludes the paper.

information transmission and reduces payoffs.
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2 Model

We consider a static strategic communication game with one receiver (he) and N ∈ {1,2} senders

(she). It is common knowledge that the state of the world, θ , is uniformly distributed on the unit

interval [0,1]. The receiver is required to hire exactly one sender, who then learns the state perfectly

and sends a cheap talk message to the receiver. Subsequently, the receiver takes an action.

If the true state is θ , the hired sender is sender i, and the receiver takes the action y, then the

payoffs are as follows:

UR(θ ,y) = −(y−θ)2

Ui(θ ,y,bi) = −(y−θ −bi)
2

U j 6=i = −Ab j

where bi is the bias of sender i, and the sender who is not selected (for N = 2) gets a reservation

payoff of −Ab j for b j ∈ {bl,bh}. An sender j’s bias b j is her private information, but it is common

knowledge that biases are drawn IID from the distribution:

bi =

 bh with probability p ∈ (0,1)

bl with probability 1− p

where 0 < bl < bh. We assume that the biases are low enough: bi <
1
4 ∀ i7. Further, let Al = A,

Ah = A+c, where c≥ 0 captures the idea that the high bias sender’s outside option is allowed to be

worse than the low bias sender’s outside option. To make sure that senders always want to get hired,

we assume their reservation payoff is weakly worse than the lowest possible equilibrium payoff

obtained by any sender from being hired, that is, worse than the payoff from a babbling equilibrium

in the Crawford-Sobel world.

Two stage game

We consider a two-stage game in which, in the first stage, the players play a cheap talk game that

could reveal information about the type of the sender, i.e., her bias.8 Following this, the receiver

7This ensures that there exists at least one informative cheap talk equilibrium when the hired sender’s bias is known.
8Note that an sender learns the state only after being hired. Therefore, in stage 1, the only information that can be

conveyed is about the senders’ bias.
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decides to hire an sender, who then learns the state perfectly. In the second stage, the hired sender

can send a cheap talk message to the receiver about the state of the world. Subsequently, the receiver

takes an action.

To contrast our results with those of the non-disclosure world in Li and Madarász (2008),

we will also consider a strategic communication game where the senders do not have the option

to reveal their types. This game will not have the first stage. We will refer to this game as the

LM game, and its equilibria as LM equilibria. The analysis for such a game is equivalent to the

non-disclosure environment analysis presented in Li and Madarász (2008). Next, we explain the

timing of the game, and then the notion of Perfect Bayesian Equilibrium in our context. The formal

definition of PBE is given in the appendix.

The timing of the game is as follows. At the beginning of the game in stage 1, each sender j

privately learns her own type (bias) b j ∈ {bh,bl} and then simultaneously sends a costless message

µ j(b j) ∈Mb to the receiver that potentially conveys information about their own bias. Without

loss of generality, we focus on direct mechanisms, so, Mb = {bh,bl}. The receiver then chooses to

hire one sender according to a hiring rule h(µ1(b1),µ2(b2)) that depends on the observed message

vector sent by both senders, and h j(µ1(b1),µ2(b2)) denotes the probability of hiring sender j. Note

that if N = 1, the receiver is required to hire the sender with probability one.

In stage 2, the hired sender i (with bias bi) learns the true state θ perfectly and sends another

message µibi(θ)∈M to the receiver possibly conveying some information about the state. Focusing

on direct mechanisms, we assume M = [0,1]. Upon observing µibi(θ), the receiver updates his

belief about true state θ and takes an action y(µibi(θ)) ∈ [0,1]. Note that stage 2 is exactly like

Crawford and Sobel (1982) if the bias of the chosen sender is fully revealed in stage 1. If not, then

stage 2 looks like the non-disclosure world of Li and Madarász (2008).

A Perfect Bayesian equilibrium consists of a profile of strategies for the receiver and all

senders, and belief vectors such that: (a) given the strategies of all players, the beliefs are de-

rived using Bayes’ rule whenever possible; (b) the receiver’s hiring rule h and the action function

y, maximize his ex-ante expected utility given his belief and the equilibrium strategy of all senders;

and (c) for each type of sender, their messaging strategy should maximize their expected payoff

given the strategies of all the other senders and the receiver.
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Notation

For ease of exposition, we denote CSb j
b j′
(k) as the payoff for a b j type sender in a k partition equilib-

rium when the sender’s bias is thought to be b j′ with probability 1 (b j,b′j ∈ {bh,bl}). Thus, when

senders are truth-telling, from Crawford and Sobel (1982), we get:

CSbh
bh
(m) =− 1

12m2 −
b2

h(m
2 +2)
3

;CSbl
bl
(n) =− 1

12n2 −
b2

l (n
2 +2)
3

In the appendix, we derive expressions for the payoffs CSbh
bl
(n) and CSbl

bh
(m) and how they impact

equilibrium. Let an n partition cheap talk equilibrium when the bias of the sender is known to be

b j be denoted by ECS(b j,n). Let Nb j denote the maximum number of partitions possible in such an

equilibrium.

3 Analysis

We start with our benchmark case of one sender. Is truthful bias revelation possible in equilibrium?

We show that it is not possible. We show later that a bias revealing equilibrium exists in the two-

sender world. Moreover, under some conditions, the bias-revealing equilibrium can give the receiver

a higher utility than any equilibrium possible without the bias-revelation stage (stage 1). Thus, this

analysis demonstrates a new channel through which competition between senders can improve the

welfare of the receiver.

3.1 One sender world

Our main result in this subsection is that with one sender, there does not exist an informative bias

revealing equilibrium9. This is not intuitive at first glance. In stage 2 of the game, the receiver can

promise different cheap talk partition equilibria as a reward to the sender for revealing her bias in

stage 1. For example, the receiver may compensate the higher bias sender with a finer partition

9Note that it is obvious that if the receiver plays a babbling equilibrium in stage 2 irrespective of the messages
received in stage 1, then both types of senders will have no incentive to deviate from truth telling in the bias revealing
stage. However, since this equilibrium is uninteresting (though the bias is revealed in equilibrium, this is not payoff
relevant for the receiver), we will only consider those equilibria in stage 2 where the receiver is playing a non-babbling
cheap talk equilibrium after at least one of the stage 1 messages.
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equilibria10 for revealing her bias as compared to the equilibrium after revealing the lower bias.11

However, we show that no matter which equilibria are played after stage 1, either the low bias sender

or the high bias sender (or both) will want to deviate from a bias revealing strategy in stage 1. This

is in contrast to the two sender case (section 3.2) where we show that there exist equilibria where

the senders truthfully reveal their bias in equilibrium. Proposition 1 shows our main result for this

section.

Proposition 1. When there is only one sender, there is no bias revealing equilibrium in pure strate-

gies.

Proof. The proof is presented in the appendix.

We give a short explanation for the non-existence of a bias revealing equilibrium in the one

sender case. Suppose that there is a bias revealing equilibrium where the high bias message results

in ECS(bh,m) equilibrium (that is, an m partition CS bh equilibrium) and the low bias message

results in ECS(bl,n) equilibrium. If m≤ n, it is easy to show that the high bias sender would deviate

and pretend to be low bias since she will be able to obtain higher actions in equilibrium, whereas

the low bias sender would want to announce her type honestly. That is, the gain from deviation is

non-negative (i.e. CSbh
bl
(n)−CSbh

bh
(m)≥ 0) for the high bias sender and the gains from not deviating

is non-negative (i.e. CSbl
bl
(n)−CSbl

bh
(m)≥ 0) for the low bias sender. Now consider any m > n and

the difference between these two differences i.e.:

[CSbh
bl
(n)−CSbh

bh
(m)]− [CSbl

bl
(n)−CSbl

bh
(m)]

= (bh−bl)
2(2− 1

n
− 1

m
)+

(b2
h−b2

l )

3
(m2−n2) (1)

This expression is clearly positive since m > n, bh > bl and at least one of m,n is greater than 1 (else

it would be a babbling equilibrium and we have stated before - we are interested in only informative

equilibria). Thus, as we increase m to incentivize the high bias sender to not deviate, before the gains

from deviating become negative for the high bias sender (i.e. high bias sender wants to reveal her
10To the extent allowed by the size of the bias.
11The reader may wonder if the lower bias sender will want to deviate and lie about her type to benefit from the

finer partition offered to the higher bias sender in such an equilibrium. The lower bias sender’s incentive compatibility
constraint will be satisfied if the partition points of the high bias sender are unbalanced (many small partitions at the
lower levels of the state with larger partitions at the higher levels) enough. This is because of the risk averse utility
function of the senders.
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bias), the gains from not deviating become negative for the low bias sender (i.e. the low bias sender

wants to lie and announce her type to be high bias). Therefore, we cannot incentivize both types of

senders to reveal their bias truthfully in any equilibrium. The intuition for the higher deviation gains

for the high bias sender is that the high bias sender obtains a more balanced partition when she lies

and pretends to be a low bias sender, whereas it is the other way around for the low bias sender.

So, what kind of equilibria exist when there is only one sender? From our result, we know that

no equilibrium perfectly reveals the sender’s bias, and thus any equilibria will feature uncertainty

about the sender’s bias in stage 2. In these environments, ‘conflict hiding’ (see Li and Madarász

(2008)) equilibria may exist12. Example 1 in appendix B demonstrates one such equilibrium.

3.2 Two sender world

Next, we consider the environment with two senders. In stage 1 (bias revealing stage), the senders

do not know the state, but they simultaneously send cheap talk messages to the receiver (about their

bias). Subsequently, the receiver hires one of them. In stage 2, the hired sender gets to see the true

state and sends a cheap talk message about the same. The sender who was not hired receives an

outside option −Ab j where b j is the bias of that sender. We assume that −Ab j < CSb j
b j
(1) i.e. not

being hired guarantees a payoff worse than the lowest equilibrium payoff if hired (from a babbling

equilibrium). This makes sure that all senders prefer getting hired in equilibrium.

3.2.1 General bias revealing equilibrium

In any equilibrium of the two-stage game, if the bias is revealed in the first stage, only partition

equilibrium a la Crawford and Sobel (1982) is possible in the second stage.

Since our objective is not just to find a bias revealing equilibrium, but also to find conditions

under which it gives the receiver a higher utility than any equilibrium possible without the bias

revealing stage, we will focus our attention on only the most informative bias revealing equilibrium

i.e. one in which the sender and receiver play the highest partition cheap talk equilibrium possible

with the chosen sender in stage 2 of the game. We use the notation SRE,v to refer to the highest

partition bias revealing strategies where the bh type sender is chosen with probability v when the two

12Conflict hiding equilibria feature both types of senders sending the same messages in equilibrium (thus the mes-
sages do not reveal the type) but over different partitions.
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senders send different bias messages. The corresponding bias revealing equilibrium (if it exists) is

denoted by E(RE,v). The utility of the decision maker from this equilibrium is given by UR(RE,v).

Below we describe strategy profile SRE,v.

Definition 1. The bias revealing strategy profile SRE,v = (µi(bi),h(bi,b j),µ j,y) is defined as:

Stage 1

µi(bi) = bi ∀ bi ∈ {bl,bh} and i ∈ {1,2}

h(bl,bl) =

(
1
2
,
1
2

)
, h(bh,bh) =

(
1
2
,
1
2

)
h(bl,bh) = (1− v,v), h(bh,bl) = (v,1− v), v ∈ [0,1]

Stage 2

For any reports where the sender who announced bk is hired:

Play ECS(bk,Nbk) equilibrium in period 2

Deviation by hired sender in stage 2: take the lowest equilibrium action in ECS(bk,Nbk)

Deviation by the receiver in hiring in stage 1: Play a babbling equilibrium with the hired sender

(2)

This strategy profile requires the senders to truthfully announce their bias in stage one of the

game. If both senders announce the same bias bk then the receiver randomly hires one of them, and

the hired sender and receiver play the ECS(bk,Nbk) equilibrium in stage 2. If the senders announce

different biases, then with probability v the receiver hires the sender who announces bh and subse-

quently they play the ECS(bh,Nbh) equilibrium in stage 2, and with probability (1− v) the receiver

hires the sender who announces bl and subsequently they play the ECS(bl,Nbl) equilibrium in stage

2. We will find parametric conditions under which the bias-revealing strategy profile described in 2

constitutes a Perfect Bayesian Equilibrium. Subsequently, we will find sufficient conditions under

which the bias revealing equilibrium is preferred by the decision maker to any equilibrium which is

possible without the bias revelation stage. The following proposition shows conditions under which

the bias revealing strategy profile can be an equilibrium.

Proposition 2. For v = [0,1), then the bias revealing strategy profile SRE,v is not an equilibrium.

If v = 1, given any bl ∈ (0,1/4), there exists a p′ and b, such that if p < p′ and bh ≥ b, SRE,v=1

12



constitutes an equilibrium E(RE,v = 1).

Proof. The proof is in the appendix.

We present the intuition for the proof here. A stochastic hiring rule v ∈ (0,1) can not be part of

an equilibrium, because following a mixed message vector announced in stage 1, the receiver will

deviate from mixing without being detected and always pick the low bias sender. When v = 0, then

the receiver is always supposed to pick the low bias sender when the bias announcements in stage

1 are different. In this case, it is not possible to satisfy the incentive compatibility condition of the

high bias sender who will always deviate and announce her bias to be low.

When v = 1, the high bias sender is always hired following a mixed message vector, this makes

it difficult to incentivize the low bias sender to reveal true type. Only when p be low, that is, the

probability of facing a high type sender is low for a low bias sender, the risk of not getting hired is

reduced. Even with this constraint, the low bias sender may feel that she can increase the probability

of her selection if she announces that her type is bh. However, when bh becomes sufficiently high,

Nbh , that is, the number of partitions offered to the high biased sender after hiring falls, lowering the

deviation payoff.

The above equilibrium E(RE,v = 1) requires that ex-post, once the types are revealed, the

receiver would choose a suboptimal action, namely choosing the high bias sender bh
13. In the next

section, we justify the existence of such an equilibrium by exploring the ex-ante welfare implica-

tions of this ex-post inefficient choice.

3.2.2 Welfare

In this section, we compare the expected utility of the receiver under the bias revelation equilibrium

E(RE,v = 1) and the best equilibria possible without the bias-revealing stage. These equilibria

when there is no bias revealing stage (stage 1) are studied as conflict hiding equilibria in Li and

Madarász (2008). We refer to them as LM equilibria. A k partition LM equilibrium when the bias

of the sender is believed to be bh with probability p is denoted by ELM(p,k).

Comparing the bias revelation equilibrium E(RE,v = 1), we show that an LM equilibrium

ELM(p,k) guarantees higher utility for the receiver whenever the number of partitions in the LM

13Whenever this type exists.
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equilibrium = k = Nbl . If k is strictly less than Nbl , we find that the bias revelation equilibrium is

better than LM equilibria only when bh is sufficiently high.

Lemma 1. Suppose E(RE,v = 1) exists with the strategy profile SRE,v=1. If the number of parti-

tions in the LM equilibrium ELM(p,k) is k = Nbl , then the ELM(p,k) is preferred to the revelation

equilibrium E(RE,v = 1) by the receiver.

Proof. The proof is in the appendix.

Since the receiver’s utility function is concave, she prefers to have lower variance in her pay-

offs. When biases are not revealed, both types of sender use the same number of partitions (albeit

with different cutoffs). Further, in this case, the number of partitions in equilibrium is the highest

possible amongst the two types of senders. When the biases are revealed, the payoff difference

between hiring the two types becomes more extreme (and therefore less desirable), as the high-bias

sender can only support a low number of partitions in equilibirum compared to the low bias type.

We show that the quadratic utility function is concave enough that the receiver prefers the equilib-

rium without bias revelation in this case. The next proposition provides a necessary condition for

the receiver to prefer the bias-revealing strategy profile to all equilibrium possible without any bias

revelation.

Proposition 3. Suppose the bias revealing equilibrium E(RE,v = 1) exists. This equilibrium is

preferred by the receiver to any LM equilibrium ELM(p,k) only if bh > 0.204 and k < Nbl .

Proof. In the appendix.

The intuition for this result is as follows. When the maximum partitions possible without bias

revelation is strictly less than Nbl , as compared to any equilibrium without bias revelation, we know

that in the revelation equilibrium the receiver gains when she hires the low bias sender and loses

when she hires the high bias sender. The gains come from higher precision (bigger partitions with

the low bias sender), and the losses come from lower precision and lower balance (when she hires

the high bias sender). As bh increases beyond 1
12

14 the non-revelation world is worse for the receiver

as both precision and balance falls whereas the revelation equilibrium is made worse only because

of a loss of balance. Thus, the payoff from a revelation equilibrium falls slower than the payoff from

14If 1
4 > bh ≥ 1

12 , then Nbh = 2
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the non-revelation equilibrium. We show that when bh is high enough the revelation equilibrium is

preferred by the receiver.

As we have seen, for a small range of parameters15, it is possible to have a bias revealing

equilibrium which is preferred by the receiver to any equilibrium possible without the bias revealing

stage. In the next section, we demonstrate how we can obtain this result for a larger parameter space.

3.3 Public Randomization Device

The bias revealing equilibrium with v = 1 requires the sender to always hire the high bias sender

whenever the bias messages of the two senders are different. This reduces the maximum payoff

possible for the receiver from the bias revealing equilibrium E(RE,v = 1). If we allow for a positive

probability of hiring for the low bias type of sender in case of mixed messages, this will improve

receiver’s payoff. However, as we mentioned before, such a mixed hiring strategy is not incentive

compatible for the receiver since after observing a mixed message in Stage 1, she would always

prefer to select the low-bias sender instead of actually mixing in equilibrium (if v∈ (0,1)). The issue

with implementing such an equilibrium is that deviation from the mixed strategy by the receiver is

not observable, and therefore not punishable.

If we allow the receiver to have access to a public randomization device16, it can solve the

commitment problem and we will be able to get a larger set of mixed strategies as part of the

equilibrium. In the one sender world, introducing this public randomization device allows us to

expand the possible equilibria in Stage 2 game: now the receiver can commit to mixing between

CSb j
b j
(x) and CSb j

b j
(y) as long as x,y ≤ Nbh , and use this as a threat to incentivize truth-telling in

Stage 117. Our first result is that there cannot be a bias revealing equilibrium in the one sender case

even after allowing for mixed strategies by the receiver (Proposition 4). In a two sender world, a

public randomization device permits us to use mixed hiring strategies in addition to mixed strategies

employed in stage 2. Such mixed hiring strategies can be used to improve the receiver’s welfare,

15bh can only take values in ( 1√
24
, 1

4 ).
16Suppose we wish to sustain an equilibrium where the high bias sender is hired with probability v (∈ (0,1)) when

the senders announce different biases in stage 1. Then a public randomization device can be thought of as a biased
coin which takes heads with probability v. The coin is tossed and if the outcome (publicly observed) is heads, then the
receiver is supposed to pick the high bias sender and if its tails, then the receiver is supposed to pick the low bias sender.

17In one sender world, hiring strategies can not be mixed because we have assumed that hiring a sender is always
strictly better than not hiring anyone.
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and indeed we find that for a broader class of parameters, the revealing equilibrium E(RE,v) exists

and generates higher welfare for the sender (Proposition 5 and 6).

Proposition 4. Suppose that the receiver can commit to mixing in hiring. There does not exist any

informative bias-revealing equilibrium with one sender.

Proof. In the appendix.

Next, we turn to the two sender case and find a) conditions under which the bias revealing strat-

egy profile in 2 constitutes an equilibrium with v ∈ (0,1), and b) conditions under which this gives

the receiver a higher utility than any equilibrium that can be achieved without the bias-revealing

stage 1.

Proposition 5. There exists a v ∈(0,1) such that ∀v ∈ [1
2 ,v], there exists a c(v), where if Abh >

Abl + c(v), there exists an interval of p in which the bias revealing strategy profile SRE,v constitutes

an equilibrium.

Proof. The detailed proof is in the appendix. Intuitively, when v < 1, the incentive compatibility

condition for the high bias type becomes harder to satisfy. We solve this problem by lowering her

outside option. If p is low enough, then the high bias sender faces the tradeoff of announcing her

type truthfully and getting hired with high probability or deviating and obtaining her outside option

with probability close to half18. If the outside option is very low, then the high bias sender prefers

to announce her type truthfully.

Proposition 6. Given any bh, there exists b̄ such that if bl < b̄, there exists an interval of p in

which the bias-revealing strategy profile SRE,v constitutes an equilibrium, and in this equilibrium

E(RE,v), the receiver enjoys a higher utility compared to any equilibrium ELM(p,n) that can exist

without the bias revealing stage.

Proof. In the appendix.

18When p is low, the other sender is likely to announce her type as bl . If the high bias sender also announces her type
to be bl , then the receiver tosses a coin and hires one of the senders.
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While comparing the bias revealing highest partition equilibrium E(RE,v) to the equilibria

possible without the bias revelation stage (ELM(p,n)), we identify two key factors that affect the re-

ceiver’s payoff. One, the amount of information transmitted as measured by the number of partitions

possible in equilibrium. Two, the variance in payoff induced by the equilibrium as measured by the

balance of the partition (more balance leads to lower variance). Since we work with a quadratic loss

utility function, the receiver prefers more information and more balance. The maximum number of

partitions possible in a non-revelation equilibrium is n, which lies between the maximum number

of partitions possible in stage 2 with the high bias sender (Nh) and the number of partitions possible

with the low bias sender (Nl)19. Thus, compared to a non-revealing equilibrium ELM(p,n), in a

revelation equilibrium E(RE,v), the receiver gains (respectively, loses) the amount of information

in stage 2 when the hired sender is low (respectively, high) bias type. Further, the variance in payoff

induced by E(RE,v) is increasing in bh−bl when p is neither too high nor too low.

We find conditions under which a bias revealing equilibrium is preferred by the receiver. First,

with the help of a public randomization device, we construct a bias-revealing equilibrium where

the players always play the most informative partition equilibrium in stage 2. Next, we show that

fixing the level of high bias, if the lower bias is small enough, then a) the number of partitions

possible when communicating with a low bias sender is strictly higher than the number of partitions

possible without the bias revelation stage if the fraction of high bias senders is above a cutoff, b)

the cutoff needed in the previous point becomes really small. Further, the variance induced by the

bias revealing equilibrium is low when the fraction of high bias senders is low. We show that with a

large fraction of low bias senders, the receiver’s benefit from the extra information (more number of

partitions) obtained from the low bias sender in a revealing equilibrium is more than the receiver’s

loss emanating from low information transmission with the high bias sender and higher variance in

payoff20.

4 Discussion and Conclusion

Here we discuss the assumptions we made, and how they affect the results.

19n is decreasing in p, as p varies from zero to one, the maximum number of partitions spans the range.
20Compared to an equilibrium without any bias revelation.
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4.1 General utility function

In this paper, we assume that both the sender and receiver have quadratic loss function utilities.

There are two reasons for this. One, it is a ubiquitous utility function in the cheap talk literature

that offers clear interpretations of results. Further, one of our objectives is to show when the bias

revealing equilibrium can be better for the receiver compared to equilibria possible without any

bias revelation. From Li and Madarász (2008), we know that fixing all other parameters, this result

is not possible if the receiver’s utility function is too concave. Thus, we work with a fixed but

standard utility function. Note that the result from Li and Madarász (2008) does not preclude

the possibility that given a fixed concave utility function, we will be able to replicate our results.

However, without closed-form solutions to aid us, we are uncertain about tractability of the problem,

and how instructive the results will be.

4.2 Renegotiation

The bias revealing equilibrium we obtain in proposition 3 and 5 is ex-ante better for the receiver

than all equilibria without any bias revelation. However, we support this with strategies that are

ex-post inoptimal. For example, if the receiver is supposed to pick the sender who announced the

high bias but instead deviates and picks the sender who announced the low bias, the hired sender

and receiver are required to play the babbling equilibrium in period 2 on this off-equilibrium path.

As babbling is an equilibrium, deviation is not possible. However, if renegotiations were permitted,

then the hired low bias sender and receiver could play the most informative equilibrium in stage 2.

Allowing for renegotiations makes it impossible for a bias revealing equilibrium to exist since the

receiver will always pick the low bias sender21. While the possibility of renegotiation disallow bias

revealing equilibrium, they strengthen our one-sender result that endogenous bias revealing is not

possible.

4.3 Conclusion

We consider a model of strategic information transmission in which senders privately know their

bias and may choose to disclose the same before communicating state-relevant information. We

21The result follows from the case of v = 0 in proposition 2.
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build on the framework developed in Li and Madarász (2008) and make bias-revelation an endoge-

nous choice. We find closed-form expressions for equilibrium payoffs under no bias revelation.

Further, we find that when there is only one sender, the disclosure of bias is not possible in equi-

librium. With two senders, we identify conditions for bias-revealing equilibria to exist. Moreover,

we find that under some conditions the receiver is better off with a bias-revealing equilibrium com-

pared to the best equilibrium possible without bias revelation. This demonstrates a novel indirect

channel through which sender competition can benefit the receiver. Unlike Krishna and Morgan

(2001) where sender competition improves the receiver’s payoff by getting them to reveal the states

directly, in our paper sender competition allows for a bias revealing equilibrium which then benefits

the receiver via better information in the cheap talk game.
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A General Expression for k-partition Conflict Hiding Equilib-

rium

Here we derive the expressions for the equilibrium ELM(p,k) which we use for welfare comparison.

Notation inconsistency In a k-partition conflict hiding equilibrium, denote the equilibrium partition

structure chosen by a b j type sender to be: [ab j
0 = 0,ab j

1 ,ab j
2 , ...,ab j

k−1,a
b j
k = 1]. Then, the action

chosen by the receiver after receiving the ith message is:

yi = p
ah

i−1 +ah
i

2
+(1− p)

al
i−1 +al

i

2

Now, since

ah
1 =

y1 + y2

2
−bh;al

1 =
y1 + y2

2
−bl

we get

y1 = p
y1+y2

2 −bh

2
+(1− p)

y1+y2
2 −bl

2
=

y1 + y2

4
−b/2

where b = pbh +(1− p)bl =expected bias. Similarly, we get for all 2≤ i≤ k−1:

yi = p
yi−1+yi

2 −bh +
yi+1+yi

2 −bh

2
+(1− p)

yi−1+yi
2 + yi+1+yi

2 −2bl

2

=
yi−1 +2yi + yi+1

4
−b (3)

2yi = yi−1 + yi+1−4b

(yi+1− yi) − (yi− yi−1) = 4b (4)

Plugging this we get,

y2− y1 = 2y1 +2b

yi− yi−1 = yi−1− yi−2 +4b = 2y1 +2b+(i−2)4b

yk− yk−1 = 2y1 +2b+(n−2)4b (5)
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This implies

y2 = y1 +2y1 +2b = 3y1 +2b

yi = (2i−1)y1 +2(i−1)2 b

yk = (2k−1)y1 +2(k−1)2 b

Also, using:

yk =
p
2

(
yk−1 + yk

2
+1−bh

)
+

1− p
2

(
yk−1 + yk

2
+1−bl

)
=

yk−1 + yk

4
− 1

2
− b

2

yk = 1− y1−2(k−1)b (6)

Equating expressions for yk, we solve for the equilibrium actions

(2k−1)y1 +2(k−1)2 b = 1− y1−2(k−1)b

y1 =
1
2k
−b(k−1)

For this to be valid, we need:

y1 ≥ 0⇐⇒ 1
2k
−b(k−1)≥ 0⇐⇒ b≤ 1

2k (k−1)
(7)

Similarly, we solve for:

y j = (2 j−1)y1 +2( j−1)2 b =
(2 j−1)

2k
+b
[
2 j2− (2 j−1)(k+1)

]
(8)

Now, Receiver’s payoff from this equilibrium ELM(p,k):

UR(CH, p,k) = pUh
R(LM, p,k)+(1− p)U l

R(LM, p,k) (9)

where Ub
R = receiver’s payoff if the hired sender’s type is b ∈ {bh,bl}.
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Calculate Uh
R separately:

Uh
R =

∫ ah
1

0
−(y1−θ)2dθ +

∫ ah
2

ah
1

−(y2−θ)2dθ + · · ·+
∫ ah

k

ah
k−1

−(yk−θ)2dθ

=
1
3

[[
(y1−θ)3

]ah
1

0
+
[
(y2−θ)3

]ah
2

ah
1

+ ..+
[
(yk−θ)3

]1

ah
k−1

]
=

1
3

[
−(1− yk)

3− y3
1 +

k−1

∑
j=1

((
y j−ah

j

)3
−
(

y j+1−ah
j

)3
)]

(10)

Now, we know that:

y j−ah
j =−

1
2k

+b [k−2 j]+bh;

y j+1−ah
j =

1
2k

+b [2 j− k]+bh

So,

(
y j−ah

j

)3
−
(

y j+1−ah
j

)3
=−2

(
1
2k

+b [2 j− k]
)3

−6b2
h

(
1
2k

+b [2 j− k]
)

since (a−b)3− (a+b)3 =−2b3−6a2b Thus,

k−1

∑
j=1

((
y j−ah

j

)3
−
(

y j+1−ah
j

)3
)
=−

[
k−1
4k3 +b2 (k−1)(k−2)+3b2

h
k−1

k

]

Using this, we get

Uh
R = −1

3

[
k−1
4k3 +b2 (k−1)(k−2)+3b2

h
k−1

k
+

(
1
2k

+b(k−1)
)3

+

(
1
2k
−b(k−1)

)3
]

= − 1
12k2 −

b2

3
(k−1)

(
k+1− 3

k

)
−b2

h
k−1

k
(11)

Similarly, we can calculate

U l
R =− 1

12k2 −
b2

3
(k−1)

(
k+1− 3

k

)
−b2

l
k−1

k
(12)
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This gives us the final expression for receiver’s payoff in the equilibrium ELM(p,n):

UR(LM, p,k) = pUh
R +(1− p)U l

R

= − 1
12k2 −

b2

3
(
k2−1

)
−d2 p(1− p)

k−1
k

(13)

Now, the receiver’s payoff from the best revealing equilibrium is:

UR(RE,v) =
(

p2 +2vp(1− p)
)

um +
(
(1− p)2 +2(1− v) p(1− p)

)
un (14)

where um (respectively, un) is the CS equilibrium payoff for the receiver when there are m (respec-

tively, n) partitions by a high bias (respectively, low bias) sender:

um =− 1
12m2 −

b2
h

3
(
m2−1

)
;un =−

1
12n2 −

b2
l

3
(
n2−1

)
Simplifying, we get the difference between these two payoffs:

∆(p) ≡ UR(RE,v))−UR(LM, p,k))

= p2
(
(1−2v)(um−un)+

k2−1
3

d2− k−1
k

d2
)
+ p

(
2v(um−un)+

k2−1
3

2bld +
k−1

k
d2
)

+

(
un +

1
12k2 +

k2−1
3

b2
l

)
(15)

We use this expression for the proof of Proposition 6.
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B Proofs and Examples

Example 1. Suppose bl =
1
6 ,bh =

1
5 and p = 3

5 . The following strategy profile constitutes a perfect

Bayesian Equilibrium.

Stage 1

µi(bi) = bl ∀ i and bi ∈ {bl,bh}

h(b) = 1 ∀b ∈ {bl,bh}

Stage 2

Sender Strategy:

µibl(θ) = m1 i f θ ∈ [0,0.146], else m2

µibh(θ) = m1 i f θ ∈ [0,0.113], else m2

Receiver strategy:

If receiver observes bl in stage 1 and m1 in stage 2, then y
(
µibl(θ)

)
= 0.0631

If receiver observes bl in stage 1 and m2 in stage 2, then y
(
µibl(θ)

)
= 0.5631

If receiver observes bh in stage 1, then y
(
µibh(θ)

)
= 0.0631

If receiver observes bi in stage 1 and m 6= m1,m2 in stage 2, then y
(
µibl(θ) 6∈ (m1,m2)) = 0.0631

Beliefs: About sender

p(bh|mi) = p ∀ messages in stage 1

Beliefs: About state

P = p(bh|m1)U [0,0.146]+ p(bl|m1)U [0,0.113] ; if receiver observes bl in stage 1 and m1 in stage 2

P = p(bh|m2)U [0.146,1]+ p(bl|m2)U [0.113,1] ; if receiver observes bl in stage 1 and m2 in stage 2

P =U [0,0.146]] ; if receiver observes bh in stage 1

P = p(bh|m1)U [0,0.146]+ p(bl|m1)U [0,0.113] ; if receiver observes bi in stage 1 and m 6= m1,m2 in stage 2

(16)

The receiver’s expected payoff in this equilibrium22 is −0.056.
22U [a,b] represents Uniform distribution with support [a,b]
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Proof of proposition 1

Proof. We will prove this result by contradiction. Suppose there exists a bias revealing equilibrium

in pure strategies. WLOG, let the equilibrium be the following:

Stage 1:

µb(x) = x ∀ x ∈ {bl,bh}

h(µb) = 1 ∀ b ∈ {bl,bh}

Stage 2:

If sender reports type bl in stage 1: Play an n-partition CS bl equilibrium

If sender reports type bh in stage 1: Play an m partition CS bh equilibrium

If the receiver arrives at an off equilibrium node, she takes the lowest equilibrium action in n

partition CS bl equilibrium

First, let us consider the incentives of the high bias sender. If she plays according to the

strategies proposed above, her expected payoff is:

−1
12m2 −

bh
2(m2 +2)

3
(17)

Clearly there is no reason to deviate in stage 2 of the game if she reveals her type truthfully in stage

1 (since stage 2 play is an equilibrium, there is no incentive to deviate). If she deviates in stage 1

and reports her type to be bl , then in stage 2 she can exploit the n partition CS bl equilibrium to

her advantage. In particular, while she does not have the incentives to deviate from the equilibrium

messages (else the receiver plays the action 1
2 ), she will change the interval of the state space on

which the messages are reported (a la Li and Madarasz’s conflict hiding equilibrium). In an n

partition CS bl equilibrium, the equilibrium actions are given by

yi =
2i−1

2n
+bl(2i2 +(1+n)(1−2i))

where i= 1,2, ...,n. Now, in equilibrium, the high bias sender will not deviate from the messages the

low bias sender was meant to send in equilibrium (else the receiver takes the action half). However,

the high bias sender does not have to choose the same partition function as the low bias sender.

In fact, she will choose cut off points on the state space to maximize her own payoff from the
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equilibrium messages. In particular, in equilibrium, she will choose points a1, ...,an−1 such that

ai + bh =
yi+yi+1

2 . When the state is between ai and ai+1, the sender will send the message so that

action yi will be played in response. The expected payoff to the high bias sender from deviating is

therefore given by:

CSbh
bl
(n) =

∫ a1

0
−(y1−θ −bh)

2 dθ +
∫ a2

a1

−(y2−θ −bh)
2 dθ + ...

∫ 1

an−1

−(yn−θ −bh)
2 dθ

Substituting the expressions for yi and ai and simplifying, we get that the expected payoff to the

high bias sender from deviating is

CSbh
bl
(n) =

−1
12n2 +bl

2(
4
3
− 1

n
− n2

3
)+blbh

2(1−n)
n

− bh
2

n
(18)

Comparing 17 and 18, we get that the high bias sender will not deviate if:

bl
2(4− 3

n
−n2)+bh

2(m2 +2− 3
n
)−blbh

6(n−1)
n

≤ 1
4
(

1
n2 −

1
m2 ) (19)

Inequality 19 captures the incentive compatibility constraint of the high bias sender for the

prescribed strategies to constitute an equilibrium.

Now, let us consider the incentives of the low bias sender. Doing the same analysis as before,

we can show that the low bias sender will not deviate from the prescribed strategies if:

−bh
2(4− 3

m
−m2)−bl

2(n2 +2− 3
m
)+blbh

6(m−1)
m

≥ 1
4
(

1
n2 −

1
m2 ) (20)

Looking at the bias revealing incentives of the two types of senders jointly, we see that 19 and

20 can simultaneously hold only if:

−bh
2(4− 3

m
−m2)−bl

2(n2 +2− 3
m
)+blbh

6(m−1)
m

≥ bl
2(4− 3

n
−n2)+bh

2(m2 +2− 3
n
)−blbh

6(n−1)
n

(21)

⇐⇒ (bh−bl)
2(2− 1

n
− 1

m
)≤ 0 (22)

This inequality cannot hold unless bh = bl or n = m = 1 (only babbling equilibrium is played).
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Since we have assumed that bl < bh and we are only looking for non-trivial equilibria in stage two,

we conclude that the proposed strategies do not constitute an equilibrium since at least one type of

sender will have incentives to deviate from truth-telling in period 1.

Proof of Proposition 2

Lemma 2. For v = 0, then the bias revealing strategy profile in 2 is not a Perfect Bayesian equilib-

rium.

Proof. Suppose that when the bias is common knowledge, the most informative equilibrium of a bh,

(respectively, bl) bias sender areceiverits m (respectively, n) partitions. We will show that if v = 0,

the high bias sender’s incentive compatibility constraint is not satisfied.

Under v = 0 the IC for bh type sender is as follows:

1
2

pCSbh
bh
(m)+

(
1− p

2

)
(−Ah))︸ ︷︷ ︸

payoff from truth-telling

≥ 1
2
(1+ p)CSbh

bl
(n)+

1
2
(1− p)(−Ah)︸ ︷︷ ︸

payoff from deviating

Rearranging we get,

p(CSbh
bh
(m)−CSbh

bl
(n))≥CSbh

bl
(n)+Ah

Notice that, RHS= CSbh
bl
− (−Ah)= the difference between the high bias sender hiding in an n parti-

tion CS bl equilibrium and a payoff worse than babbling. Clearly, this is positive. Now, we consider

the LHS for two cases.

Case 1: m = n

We will show that the LHS is negative (at m = n) so that the above cannot hold.

CSbh
bh
(m)<CSbh

bl
(n)

⇔ (bh−bl)(1−n)(
bh−bl

n
+

(1+n)(bh +bl)

3
)< 0

This is true since n≥ 2 and bh > bl .

Case 2: m < n

Once again, we will show that CSbh
bh
(m) < CSbh

bl
(n) and thus the high bias sender will deviate and
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announce her type to be bl . We will prove this by contradiction. Suppose that CSbh
bh
(m)≥CSbh

bl
(n).

By proposition 1, we know that in the one sender case if the high bias sender does not want to

deviate from truth telling then the low bias will want to deviate i.e. CSbl
bl
(n)<CSbl

bh
(m).

Consider CSbl
bl
( j)<CSbl

bh
(m) where j can take any natural number up to n. Fixing bl,bh,m, we

see that the LHS is increasing in j while the RHS is independent of j. Thus, if we can show that

CSbl
bl
(m)>CSbl

bh
(m), then that will imply that CSbl

bl
(n)>CSbl

bh
(m), thereby giving us a contradiction.

CSbl
bl
(m)>CSbl

bh
(m)

⇔ (bh−bl)(m−1)(bh(
m
3
− 1

m
)+bl(

1
3
+

1
m
))> 0 (23)

This is always true for all m>1.

Lemma 3. If v ∈ (0,1), then the bias revealing strategy profile in 2 (denoted by SRE,v) is not a

Perfect Bayesian equilibrium.

Proof. In this case, the receiver will deviate when two different biases are announced in stage 1.

Since v is strictly between zero and one, 2 requires the receiver to sometimes hire the low bias

sender and sometimes the high bias sender, and subsequently play the most informative equilibrium

with them. However, since the receiver is always better off with a lower bias sender in the most

informative equilibrium, the receiver will deviate from mixing and always choose the low bias

sender.

Lemma 4. For v = 1, given any bl ∈ (0,1/4), there exists a value b > bl and p2 > 0, such that if

bh ≥ b and p < p2, the bias revealing strategy profile in 2 constitutes an equilibrium.

Proof. For v = 1 let us write the IC for both the bh and bl type sender. The IC for bh is given by,

(
1− p

2

)
CSbh

bh
(m)+

p
2
(−Ah)≥

1
2
(1− p)CSbh

bl
(n)+

1
2
(1+ p)(−Ah)

Rearranging we get,

p≥ p1 ≡
CSbh

bh
(m)+ 1

2(A+ c)− 1
2CSbh

bl
(n)

1
2(CSbh

bh
(m)−CSbh

bl
(n))

=
(CSbh

bl
(n)−CSbh

bh
(m))− (CSbh

bh
(m)+(A+ c))

(CSbh
bl
(n)−CSbh

bh
(m))
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For this IC to hold we need p1 ≤ 1, for c > 0 and sufficiently large, this condition always holds true.

The IC for bl is given by,

1
2
(1− p)CSbl

bl
(n)+

1
2
(1+ p)(−Al)≥ (1− p

2
)CSbl

bh
(m)+

p
2
(−Al)

Rearranging we get,

p≤ p2 ≡
(1

2CSbl
bl
(n)−CSbl

bh
(m)− 1

2Al)

1
2(CSbl

bl
(n)−CSbl

bh
(m))

=
(CSbl

bl
(n)−CSbl

bh
(m))− (CSbl

bh
(m)+A)

(CSbl
bl
(n)−CSbl

bh
(m))

This IC can hold only if p2 ≥ 0 or

CSbl
bl
(n)−CSbl

bh
(m)≥CSbl

bh
(m)+A (24)

Note that, given bl , CSbl
bh
(m) is decreasing in bh, this is because,

∂CSbl
bh
(m)

∂bh
=


−2bh

m2−4
3 − 2(bh−bl)

m −2bl if 1
2m(m+1) ≤ bh <

1
2m(m−1)

−(2m−1)( 1
12m2(m−1)2 +

b2
h

3 )−
(bh−bl)

2

m(m−1) −2bh
m2−4

3 − 2(bh−bl)
m −2bl otherwise

Thus for any m≥ 2,
∂CS

bl
bh
(m)

∂bh
< 0, which implies as bh increases the LHS of 24 would increase

and the RHS would increase making the IC easier to hold.

Furthemore, as bh→ 1/4, we get,

(CSbl
bl
(n)−CSbl

bh
(m))− (CSbl

bh
(m)+A) =

1
48
− 1

12n2 +
bl

2
−

b2
l (n

2 +2)
3

≥ 0 ∀n≥ 2

Thus p2 > 0 as bh→ 1/4. Combining this with the result that as bh decreases, LHS of inequality

24 decreases and RHS increases there exists a cutoff value of bh, namely b̄ such that for all bh ≥ b̄,

p2 > 0. Note that at bh = bl since the LHS = 0 but CSbl
bh=bl

(m = n)> A, p2 cannot be positive. This

impies b̄ > bl .

Thus the IC for bl is satisfied for p < p2 and bh ≥ b̄(> bl).
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Proof for lemma 1

Proof. Given equation 7 in appendix A, if the maximum number of partitions of ELM(p,n) is the

same as the maximum number of partitions sustained with a bl sender, that is, Nl , it must be:

b≡ pbh +(1− p)bl <
1

2n(n−1)
(25)

⇒ p <

1
n(n−1) −bl

d
; (26)

where d = bh−bl > 0

The receiver’s utility from the revealing equilibrium E(RE,v):

UR(RE,v) =
[
p2 +2p(1− p)

]
CSbh

bh
(m)+(1− p)2CSbl

bl
(n)≡ R (27)

Whereas the receiver’s utility from the n-partition conflict hiding equilibrium ELM(p,n):

UR(LM, p,n) =− 1
12n2 −

b2 (n2−1
)

3
− n−1

n
d2 p(1− p)≡ L (28)

We need to show that when n = Nl , we always have L > R.

Rewriting the expressions of 27 and 28 , we get:

L =

[
−(1− p)2

12n2 − (1− p)2 bl
(
n2−1

)
3

]
+

(1− p)2

12n2 − 1
12n2 − p2 b2

h

(
n2−1

)
3

−2p(1− p)bhbl

(
n2−1

)
3

− n−1
n

d2 p(1− p)

and

R =

[
−(1− p)2

12n2 − (1− p)2 bl
(
n2−1

)
3

]
+
[
p2 +2p(1− p)

]
CSbh

bh
(m)
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Thus plugging in the value of CSbh
bh
(m), we get L > R would imply,

(1− p)2

12n2 − 1
12n2 − p2 b2

h

(
n2−1

)
3

−2p(1− p)bhbl

(
n2−1

)
3

− n−1
n

d2 p(1− p)

>
[
p2 +2p(1− p)

](
− 1

12m2 −b2
h

m2−1
3

)

Since n > m, and p < 2, it suffices to show:

2p
b2

h

(
n2−1

)
3

−2p2 b2
h

(
n2−1

)
3

−2p(1− p)bhbl
n2−1

3
−d2 p(1− p)

n−1
n

> 0

⇐⇒ 2p(1− p)

[
bh
(
n2−1

)
3

]
(bh−bl)> (bh−bl)

2 p(1− p)
n−1

n

⇐⇒ 2n
(

n+1
3

)
bh > (bh−bl)

Now, we know that

bh >
1

2n(n−1)
>

1
2n(n+1)

so,

2n
(

n+1
3

)
bh >

1
3

Thus, sufficient condition for L > R is:

bh−bl <
1
3

which is always satisfied because bl < bh <
1
4

Proof of proposition 3

Proof. Suppose the maximum number of partitions sustained in E(RE,v) are m and n, when hiring

a high or low bias sender respectively. A conflict hiding equilibrium ELM(p,k), on the other hand,

sustains at most k number of partitions.

We show that if bh≤ 1/
√

24, E(RE,v) can never generate a higher welfare for the receiver compared

to the LM equilibrium ELM(p,k). For this, we use (a) the condition on p for the existence of an

equilibrium, and (b) the condition on p that ensures that the number of partitions in the ELM(p,k) is
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less than the number of partitions that RE can sustain. We find out the range of bh for which these

two conditions can never be satisfied simultaneously.

For E(RE,v) to exist, we get get a range of p from the IC for bl type:

p≤ p2 =
(CSbl

bl
(n)−CSbl

bh
(m))− (CSbl

bh
(m)+A)

(CSbl
bl
(n)−CSbl

bh
(m))

(29)

From quation 7 in appendix A, we know that ELM(p,k) can sustain at most n− 1 partitions only

when:

p≥ p =

1
2n(n−1) −bl

bh−bl
(30)

This implies that if p2 < p, conditions 29 and 30 can not hold together, so E(RE,v) can never be

better than ELM(p.k) in terms of the receiver’s utility.

If p > p2, that is,

1
2n(n−1) −bl

bh−bl
> 1− CSbl bh (m)+A

CSbl
bl
(n)−CSbl

bh
(m)

CSbl
bh
(m)+A

CSbl
bl
(n)−CSbl

bh
(m)

>
bh− 1

2n(n−1)

bh−bl(
m2−1
12m2 +b2

l −
(bh +bl)

2

2
)(bh−bl

)
>

(
bh−

1
2n(n−1)

)(
n2−m2

12m2n2 −
b2

l (n
2 +2)
3

+
(bh +bl)

2

2

)

Note that, as bh increases, i.e., m decreases, p2 increases (from lemma 2), but p decreases, so p− p2

decreases. Thus at the minimum possible value of m, namely m = 2, p− p2 would be minimized.

For m = 2 the inequality p > p2 can be written as:

(
1
16

+b2
l −

(bh +bl)
2

2

)
(bh−bl)>

(
bh−

1
2n(n−1)

)(
n2−4
48n2 −

b2
l (n

2 +2)
3

+
(bh +bl)

2

2

)

Let us define the difference D≡ p− p2 as follows:

D = (bh−bl)

(
1

16
+b2

l −
(bh +bl)

2

2

)
−
(

bh−
1

2n(n−1)

)(
n2−4
4bn2 −

b2
l (n

2 +2)
3

+
(bh +bl)

2

2

)
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We want to find conditions on bh such that D > 0 i.e., p > p2. Since p− p2 is minimized at m = 2,

if D > 0 for bh ≤ b̄ where b̄ ∈ (1/12,1/4) then p > p2 for all m > 2.

(
1

16
+b2

l −
(bh +bl)

2

2

)
(bh−bl)>

(
bh−

1
2n(n−1)

)(
n2−4
48n2 −

b2
l (n

2 +2)
3

+
(bh +bl)

2

2

)

Our goal is to find the range of bh for which D > 0. We show that ∂D
∂bl

< 0, i.e, D is a decreasing

function of bl and at the highest value of bl given n, D > 0 and hence it will be positive for any

lower bl as well.

First, we show that ∂ 2D
∂b2

l
> 0 for all bl . Next, we find that ∂D

∂bl
< 0 at the highest values of bl

given n. Hence, ∂D
∂bl

< 0 for all values of bl .

The derivative of D wrt bl

∂D
∂bl

=− 1
16
−

3(b2
h +b2

l )

2
+

2bhbl(n2 +5)
3

− bl(2n2 +1)
6n(n−1)

+
bh

2n(n−1)

and the second derivative would be,

∂ 2D
∂b2

l
=−3bl +

2bh(n2 +5)
3

− 2n2 +1
6n(n−1)

.

Since ∂ 2D
∂b2

l
is increasing in n and bh we check that at the min possible value of n, namely n = 3 and

bh, namely bh = 1/12 (given m = 2):

∂ 2D
∂b2

l
=−3bl +

1
4
> 0

for all bl <
1

12 . Since ∂ 2D
∂b2

l
> 0 for n ≥ 3, we will show that at the maximum possible value of bl:

bl → 1/2n(n−1), where ∂D
∂bl

is maximized, ∂D
∂bl

< 0. Now,

lim
bl→1/2n(n−1)

∂D
∂bl

=− 1
16
−

3b2
h

2
− 4n2 +11

24n2(n−1)2 +bh
2n2 +13
6n(n−1)

≤ 0

for n ≥ 4. For n = 3, however, there exists range of bh such that whenever bh > b′h > 1/12,

limbl→1/2n(n−1)
∂D
∂bl

> 0. Next, we find out that threshold b′h.
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Rewrite D≥ 0 as,

(bh−bl)(
1

16
+b2

l −
(bh +bl)

2

2
)≥ (bh−

1
2n(n−1)

)(
n2−4
4bn2 −

b2
l (n

2 +3)
3

+
(bh +bl)

2

2
)

⇒ n2 +2
6

+
n2 +5

3(n−1)2 ≥
(bh2n(n−1)+1)2

(n−1)2

⇒ n4(1−24b2
h)+2n3(24b2

h−1)+n2(5−24b2
h +24bh)+n(24bh−4)+6≥ 0

Consider the case n≥ 4 .For (1−24b2
h)> 0 or bh < 1/

√
24, the leading term of the polynomial

is positive. and hence the polynomial is positive for all n≥ 4.

Now let us consider the case for n = 3. At bh = 1/
√

24, we find,

∂D
∂bl
≈−7 < 0

And, we have already shown that ∂ 2D
∂b2

l
> 0, Thus for all bh ≤ 1/

√
24, ∂D

∂bl
< 0. Hence, as argued

before, D is mininized as bl → 1/2n(n− 1). So, for all bh ≤ 1/
√

24 and n=3, the minimum value

of D is:

D = n4(1−24b2
h)+2n3(24b2

h−1)+n2(5−24b2
h +24bh)+n(24bh−4)+6≥ 0

Thus, for all n ≥ 3 we find that for bh ≤ 1/
√

24 the LM equilibrium generates higher welfare for

the receiver compared to the RE equilibrium.

If bh ∈ ( 1√
24
, 1

4), there exists an E(RE,v) that generates a higher welfare for the receiver compared

to the LM equilibrium.

Proof of proposition 4

Proof. Consider the following strategies. Both types of senders reveal their type. For the receiver’s
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strategy, we abuse notation and write the equilibrium she will play:

receiver strategy:

If µb = bl , with probability (vl), play ECS(bl, j) and with probability (1− vl), play ECS(bl,k)

If µb = bh, with probability (vh), play ECS(bh,x) and with probability (1− vh), play ECS(bh,y)

where j,k,x,y ∈ N and vl,vh ∈ [0,1]. WLOG let j ≥ k,x≥ y

Suppose such an equilibrium exists for some choice of parameters. The IC conditions for

truth-telling is give by,

ICbl : vlCSbl
bl
( j)+(1− vl)CSbl

bl
(k)≥ vhCSbl

bh
(x)+(1− vh)CSbl

bh
(y) (31)

ICbh : vhCSbh
bh
(x)+(1− vh)CSbh

bh
(y)≥ vlCSbh

bl
( j)+(1− vl)CSbh

bl
(k) (32)

Adding, we get,

vl(CSbl
bl
( j)−CSbh

bl
( j))+(1− vl)(CSbl

bl
(k)−CSbh

bl
(k))≥

vh(CSbl
bh
(x)−CSbh

bh
(x))+(1− vh)(CSbl

bh
(y)−CSbh

bh
(y)) (33)

Using equations 17, 18 and the corresponding expressions for the low bias sender, we can calculate:

CSbl
bl
(n)−CSbh

bl
(n) = (bh−bl)

(
bh

1
n
+bl(2−

1
n
)

)
(34)

CSbl
bh
(m)−CSbh

bh
(m) = (bh−bl)

(
bh(2−

1
m
)+bl

1
m

)
(35)

Plugging in the values from above in 33 we get,

(bh−bl)

(
vl

j
+

(1− vl)

k
+

vh

x
+

(1− vh)

y
−2
)
≥ 0 (36)

Since bh ≥ bl this would be true if and only if

vl

j
+

(1− vl)

k
+

vh

x
+

(1− vh)

y
≥ 2 (37)
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which would require j,k,x,y≤ 1. This would imply the equilibrium play would be babbling under

all possible revelation in the first stage. However, this is not true since we were looking for an

informative bias revealing equilibrium. Therefore our assumption is wrong and there does not exist

any informative equilibrium in the one sender case even if we permit the receiver to mix with

commitment in hiring.

Proof of proposition 5

Proof. IC for bh:

p
(

v− 1
2

)(
CSbh

bl
(n)−CSbh

bh
(m)
)
>

1
2

(
CSbh

bl
(n)−CSbh

bh
(m)
)
+

(
1
2
− v
)(

CSbh
bh
(m)+A+ c

)
(38)

For v < 1
2 , we can rewrite the IC as follows:

p <

1
2

(
CSbh

bl
(n)−CSbh

bh
(m)
)
+
(1

2 − v
)(

CSbh
bh
(m)+A+ c

)
(
v− 1

2

)(
CSbh

bl
(n)−CSbh

bh
(m)
) (39)

Note that since CSbh
bl
(n) ≥ CSbh

bh
(m) as shown in lemma 2 the denominator is negative. Also,

for any c ≥ 0, CSbh
bh
(m)+A+ c > 0 thus the numerator is positive. This implies equation 39 holds

only if p < 0. Thus v < 1
2 cannot be a possible equilibrium.

On the other hand if v≥ 1
2 , we can rewrite the IC as,

p >

1
2

(
CSbh

bl
(n)−CSbh

bh
(m)
)
+
(1

2 − v
)(

CSbh
bh
(m)+A+ c

)
(
v− 1

2

)(
CSbh

bl
(n)−CSbh

bh
(m)
) = p1 (40)

We need that the RHS is less than 1 to get a feasible region for p.We know that the denominator

is positive, since CSbh
bl
(n) ≥ CSbh

bh
(m) as shown in lemma 2. In the numerator, since CSbh

bl
(n) ≥

CSbh
bh
(m), and CSbh

bh
(m) > −(A + c), the first expression is positive while the second expression

is negative. Then, for every v ∈ (1/2,1], ∃c1 (v) =
(v+1)

(
CS

bh
bl
(n)−CS

bh
bh
(m)
)

(v− 1
2)

−CSbh
bh
(m)−A. Thus,

∀c > c1 (v) ,RHS < 1.
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Considering v > 1
2 , the IC for bl is given as below

p <

1
2

(
CSbl

bl
(n)−CSbl

bh
(m)
)
+
(1

2 − v
)(

CSbl
bh
(m)+A

)
(
v− 1

2

)(
CSbl

bl
(n)−CSbl

bh
(m)
) = p2 (41)

We need the RHS to be greater than zero to get a feasible region for p. Since CSbl
bl
(n) >CSbl

bh
(m))

(refer lemma 2), the denominator is positive. Furthermore, the first expression of the numerator is

positive while the second is negative. At v = 1
2 ,RHS > 0, and RHS is continuous and decreasing

in v, so there must exist a v = 1
2

CS
bl
bl
(n)+A

CS
bl
bh
(m)+A

, such that RHS=0. Since CSbl
bl
(n)>CSbl

bh
(m), this v > 1

2 .

Thus, for all 1
2 < v < v,RHS > 0.

To satisfy both the ICs simultaneously, we need:

1
2(CSbh

bl
(n)−CSbh

bh
(m))+(1

2 − v)(CSbh
bh
(m)+A+ c)

(v− 1
2)(CSbh

bl
(n)−CSbh

bh
(m))

<

1
2(CSbl

bl
(n)−CSbl

bh
(m))+(1

2 − v)(CSbl
bh
(m)+A)

(v− 1
2)(CSbl

bl
(n)−CSbl

bh
(m))

For any v′ such that 1
2 < v′ < v we can always choose c high enough to make the above inequality

hold. Suppose it holds when c > c2(v′). Now for this v′, we can find c1(v′) which makes the IC for

bh feasible.

Then, for every 1
2 < v′ < v, we can find a c(v′) = max{c1(v′),c2(v′)} such that given any v′ for

all c > c(v′), our bias revealing strategy profile described in 2 is an equilibrium.

Proof of proposition 6

Proof. Let Nbl = n, Nbh = m and the maximum number of partitions possible in ELM(p,k) is k ≥ 2.

Then, we know from proposition 5, that there exists a v̄ such that given any v ∈ [1
2 , v̄], there ex-

ists a c̄(v) such that if c > c̄(v) the bias revealing strategies described in 2 constitute an equilibrium.

Following equation 15 the difference between the payoffs of the receiver from E(RE,v) and
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ELM(p,k) as derived in appendix A can be written as a quadratic expression:

∆(p) = Ap2 +Bp+C

where

A = (CSbh
bh
(m)−CSbl

bl
(n))(1−2v)+(k−1)(bh−bl)

2(
k+1

3
− 1

k
)

B = (CSbh
bh
(m)−CSbl

bl
(n))v+(k−1)(bh−bl)(

(k+1)bl

3
+

bh−bl

2k
)

C =CSbl
bl
(n)−CSbl

bl
(k)

We need to show that ∆(p) > 0 for a range of p. The roadmap of this proof is as follows. First,

we note that for the existence of an equilibrium, we need p ∈ [p1, p2], i.e., the ICs for both types of

senders are satisfied, as given in 40 and 41. For a sufficiently low bl , we can choose c high enough

such that p1 goes to zero, so for a low p we know that equilibrium exists.

Second, for very low p, whenever C > 0, we get ∆ > 0, so next we find conditions for which

C > 0. This gives us another lower bound on p: p > z.

Third, for bl → 0, we can show that z→ 0, and there exists a threshold of v, v∗ > 1
2 such that

at p = z, the E(RE,v) exists and ∆ > 0. Hence, for all p ∈ [z, p2], E(RE,v) is better than ELM(p,k)

equilibria.

For the first step, we need to ensure the existence of the bias-revealing equilibrium, that re-

quires p ∈ I = [p1, p2] (given by 40 and 41 in Proposition 4). Now, let us pick a v ∈ [1
2 , v̄]. From

Proposition 4, we know that there exists a c̄(v) such that ∀c > c̄(v), 40 holds, so let us pick a

c = c
′
> c̄ which makes p1→ 0.

For the second step, since the function is quadratic in p, if C > 0, then for a very low p,

the difference in payoffs: UR(RE,v)−UR(LM, p,k) is positive. C > 0 requires that the maximum

number of partitions in the conflict hiding equilibrium is strictly less than the maximum number of

partitions possible when the bias of the sender is known to be bl i.e. n > k. By lemma 1 this requires

p > z =
1

2n(n−1) −bl

bh−bl
(42)
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So, for the existence of a revealing equilibrium where n > k, we need

p > max(z, p1) (43)

where p1 is given in 39.

Thus, max(z, p1) = z, so we only need to show that at p = z,∆ > 0. For this to be an equilibrium,

we also need IC for bl to hold. Using 41, we need:

z < ph1 =

1
2(CSbl

bl
(n)−CSbl

bh
(m))+ 1

2(CSbl
bh
(m)+A)− v(CSbl

bh
(m)+A)

(v− 1
2)(CSbl

bl
(n)−CSbl

bh
(m))

(44)

Let bl → 0. Then, n→ ∞, hence z→ 0 from above, hence satisfies 44.

At p = z,

Ap2 +2Bp+C > 0 ⇒ v < v (45)

where v =
z2CSbh

bh
(m)+(1− z)2CSbl

bl
(n)−CSbz

bz
(k)+ (k−1)(bh−bl)

2z(1−z)
k

2z(1− z)(CSbl
bl
(n)−CSbh

bh
(m))

bz = zbh +(1− z)bl (46)

and CSbz
bz
(k) =− 1

12k2 −
b2

z (k
2−1)
3

−b2
z

As bl → 0, 45 holds because v goes to ∞. For 44 to hold, we get the condition:

v <
1
2

(
A

CSbl
bh
(m)+A

)
(47)

Thus, we can find a v∗(> 1
2) such that 44 holds if 1

2

(
A

CS
bl
bh
(m)+A

)
> 1

2 . This is true because the

highest possible payoff for the receiver at any state is zero and therefore CSbl
bh
(m)< 0.

Thus, there exists a cutoff b̄ such that if bl < b̄ then there exists a set G of the form [z, ph1 ], a v∗ > 1
2

and a c∗ such that the bias revealing strategies in 5 constitute an equilibrium and they give the

receiver a higher payoff than any payoff possible in a conflict hiding equilibrium without the bias

revelation stage. Hence, proved.
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C Partially Conflict Revelation Equilibrium

As outlined in Li and Madarász (2008) another type of equilibrium can exist without the bias reve-

lation stage. In such an equilibrium, the low-bias sender can reveal his type but only up to the state

s ≤ d ≡ bh− bl . The equilibrium structure takes the following form: In the space [0,s], we have

ECS(bl, j), where the bl type sender’s type is revealed. In [s,1], we have a conflict hiding equilibrium

with k partitions.

Let α l
1, . . .α

l
j denote the cutoffs in the [0,s] interval. Let the corresponding actions chosen by

the decision-maker be yl
1, . . .y

l
j respectively. Since the bias is revealed in this case, the receiver will

choose actions yl
i a la Crawford and Sobel (1982). Thus we will get,

αi = α1i+2i(i−1)bk

Since α l
j = s we get,

α1 =
s
j
−2( j−1)bl; ⇒ αi =

si
j
−2i( j− i)bl

The utility of the receiver from this conflict revealing messages are given by,

UR(CR, j,s) =− 1
12

j

∑
i=1

(αi−αi−1)
3 =− s3

12 j2 −
sb2

l ( j2−1)
3

When the type of the player is not revealed, suppose bh chooses ah
1, . . .a

h
k as the cutoffs over

[0,1] and bl chooses al
1, . . .a

l
k as the cutoff for the same messages over [s,1]. Let y1, . . .yk denote the

corresponding action chosen by the receiver for these k messages. Then,

y1 = p
ah

1
2
+(1− p)

al
1 + s
2

yi = p
ah

i +ah
i−1

2
+(1− p)

al
i +al

i−1

2

yk = p
1+ah

k−1

2
+(1− p)

+al
k−1

2
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Taking differences we get, for all i = 2, . . .k

yi− yi−1 = 2y1 +2b+(i−2)4b−2(1− p)s; where b = pbh +(1− p)bl

Combining this with,

1− yk = y1 +2b(k−1)− (1− p)s

we get,

y1 =
1
2k
−b(k−1)+

2k−1
2k

(1− p)s

yi =
2i−1

2k
+b(2i2− (k+1)(2i−1))+

2k−2i+1
2k

(1− p)s

yk =
2k−1

2k
−b(k−1)+

1
2k

(1− p)s

The receiver’s payoff if being matched with bh sender would be

Uh
R(CH,s,k) =

∫ ah
1

0
−(y1−θ)2dθ +

∫ ah
2

ah
1

−(y2−θ)2dθ + · · ·+
∫ 1

ah
k−1

−(yk−θ)2dθ

=
1
3

[[
(y1−θ)3

]ah
1

0
+
[
(y2−θ)3

]ah
2

ah
1

+ ..+
[
(yk−θ)3

]1

ah
k−1

]
=

1
3

[
−(1− yk)

3− y3
1 +

k−1

∑
i=1

((
yi−ah

i

)3
−
(

yi+1−ah
i

)3
)]

Plugging in the values of yi and ah
i we get,

(yi−ah
i )

3− (yi+1−ah
i )

3 = (− 1
2k

+b(k−2i)+
(1− p)s

2k
+bh)

3− (
1
2k
−b(k−2i)− (1− p)s

2k
+bh)

3

=−2(
1
2k
−b(k−2 j)− (1− p)s

2k
)3−6b2

h(
1
2k
−b(k−2 j)− (1− p)s

2k
)

Hence, we get,

Uh
R(CH,s,k) =− 1

3
[
(1− (1− p)s)3(k−1)

4k3 +(1− (1− p)s)(k−1)(b2(k−2)+
3b2

h)

k

+(1− yk)
3 + y3

1]
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Similarly, the receiver’s payoff if being matched with bl sender would be

U l
R(CH,s,k) =

∫ al
1

s
−(y1−θ)2dθ +

∫ al
2

al
1

−(y2−θ)2dθ + · · ·+
∫ 1

al
k−1

−(yk−θ)2dθ

=
1
3

[[
(y1−θ)3

]al
1

s
+
[
(y2−θ)3

]al
2

al
1

+ ..+
[
(yk−θ)3

]1

al
k−1

]
=

1
3

[
−(1− yk)

3− (y1− s)3 +
k−1

∑
i=1

((
yi−al

i

)3
−
(

yi+1−al
i

)3
)]

and similarly, we can show that,

U l
R(CH,s,k) =− 1

3
[
(1− (1− p)s)3(k−1)

4k3 +(1− (1− p)s)(k−1)(b2(k−2)+
3b2

l
k

)

+(1− yk)
3 +(y1− s)3]

Thus the expected payoff of the receiver from the conflict hiding region of the equilibrium would

be,

UR(CH,s,k) =−1
3
(
(1− (1− p)s)3(k−1)

4k3 +b2(1− (1− p)s)(k−1)(k−2))

− (1− (1− p)s)
k−1

k
(pb2

h +(1− p)b2
l )−

1
3
((1− yk)

3 + py3
1 +(1− p)(y1− s)3)

where,

(1− yk)
3 + py3

1 +(1− p)(y1− s)3 = (
1− (1− p)s

2k
−b(k−1))3

+ p(
1− (1− p)s

2k
−b(k−1)+(1− p)s)3

+(1− p)(
1− (1− p)s

2k
−b(k−1)− ps)3

Simplifying we get,

(1− yk)
3 + py3

1 +(1− p)(y1− s)3 = 2(
1− (1− p)s

2k
)3 +6

1− (1− p)s
2k

b2(k−1)2

+ s3 p(1− p)(1−2p)+3s2 p(1− p)(
1− (1− p)s

2k
−b(k−1))
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Plugging this value in the receiver’s payoff we get,

UR(CH,s,k) =−1
3
(
(1− (1− p)s)3(k−1)

4k3 +b2(1− (1− p)s)(k−1)(k−2))

− (1− (1− p)s)
k−1

k
(pb2

h +(1− p)b2
l )

− 1
3
(2(

1− (1− p)s
2k

)3 +6
1− (1− p)s

2k
b2(k−1)2

+ s3 p(1− p)(1−2p)+3s2 p(1− p)(
1− (1− p)s

2k
−b(k−1)))

Simplifying we get,

UR(CH,s,k) =− 1
12k2 (1− (1− p)s)3− b2

3
(k2−1)(1− (1− p)s)

−d2 p(1− p)
k−1

k
(1− (1− p)s)

− 1
3

s2 p(1− p)(s(1−2p)+2(
1− (1− p)s

2k
−b(k−1)))

So the total payoff of the receiver would be given by,

UR(LM, p,s, j,k) =− s3

12 j2 −
sb2

l ( j2−1)
3

− 1
12k2 (1− (1− p)s)3− b2

3
(k2−1)(1− (1− p)s)

−d2 p(1− p)
k−1

k
(1− (1− p)s)

− 1
3

s2 p(1− p)(s(1−2p)+2(
1− (1− p)s

2k
−b(k−1)))

Proof under reconstruction
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